skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Baqiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundAdding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. ResultsWe present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available athttps://github.com/c5shen/EMMA. ConclusionsEMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment. 
    more » « less
  2. Abstract SummaryMultiple sequence alignment is a basic part of many bioinformatics pipelines, including in phylogeny estimation, prediction of structure for both RNAs and proteins, and metagenomic sequence analysis. Yet many sequence datasets exhibit substantial sequence length heterogeneity, both because of large insertions and deletions in the evolutionary history of the sequences and the inclusion of unassembled reads or incompletely assembled sequences in the input. A few methods have been developed that can be highly accurate in aligning datasets with sequence length heterogeneity, with UPP one of the first methods to achieve good accuracy, and WITCH a recent improvement on UPP for accuracy. In this article, we show how we can speed up WITCH. Our improvement includes replacing a critical step in WITCH (currently performed using a heuristic search) by a polynomial time exact algorithm using Smith–Waterman. Our new method, WITCH-NG (i.e. ‘next generation WITCH’) achieves the same accuracy but is substantially faster. WITCH-NG is available at https://github.com/RuneBlaze/WITCH-NG. Availability and implementationThe datasets used in this study are from prior publications and are freely available in public repositories, as indicated in the Supplementary Materials. Supplementary informationSupplementary data are available at Bioinformatics Advances online. 
    more » « less